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Incertezza gl

o Le azioni “intelligenti” vengono fatte verso un ambiente che presenta una certa
dose di incertezza nel futuro.

E.g. Dobbiamo andare a Malpensa. Quanto tempo prima dobbiamo partire?

Dalla nostra esperienza deriviamo che 60 minuti sono sufficienti se.....

Rimane un po’ di incertezza. Se partiamo 120 minuti prima ci teniamo un margine,
ma passeremo facilmente tanto tempo in aerecoporto senza fare nulla.

Quando prendiamo una decisione, teniamo conto in modo pit 0 meno esplicito di
questi elementi di incertezza legati al risultato delle azioni. Questi elementi hanno
a che fare con a statistica.

A.A. 2025-2026 4/56 http:\\borghese.di.unimi.it\

4



A
Probabilita (visione frequentista) ﬁJ

- lim ™
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P(A=a)=
Per il teorema del limite centrale la frequenza di un evento su infinite realizzazioni ¢ uguale alla sua
probabilita.

La probabilita che si verifichi uno tra i vari casi possibili € sempre 1. Ovverosia la somma delle
probabilita di tutti gli eventi (se mutuamente esclusivi) somma 1.

Supponiamo A = {a,, a,}
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A
Altri modi di definire la probabilita ﬁ

o Visione oggettivista. Tendenza di un fenomeno ad accadere. Se lanciamo una moneta in aria,
possiamo affermare che avremo 50% di probabilita che esca testa e 50% che esca croce. Ci
aspettiamo che questa affermazione venga supportata quando effettuiamo infiniti esperimenti.

o Visione soggettivista. La probabilita viene espressa come credenza del soggetto. “Secondo me
la probabilita di avere una carie ¢ del 10%”. Non dipendono da un ragionamento fisico e
rappresentano una probabilita a-priori. Deve potere essere corretta quando arrivano evidenze
sperimentali.
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Semantica della probabilita dll

Possiamo ottenere un grado di credenza (belief) nell’affermazione.
Questa potra rivelarsi vera o falsa con una certa probabilita (e.g. «c’¢
una carie?»).

La probabilita ¢ basata sulla conoscenza (a-priori) non sull’evento che si
¢ gia verificato!! La conoscenza a-priori e’ ricavata dall’analisi di tutti 5\ "
gli altri casi gia osservati o su una conoscenza oggettiva o soggettiva ‘ \ )

dell’evento. ~

La probabilita ci consente di trattare le diverse possibilita di un
evento.

E ci consente di associare agli eventi un grado di credenza, prima
che si verifichino.
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Problematiche associate alla probabilita ﬁ

Problema della visione frequentista:

Omogeneita del campione (classe di riferimento). Come posso effettuare la
media di eventi in modo “sicuro”?

Limitatezza del campione

Laziness (svogliatezza). Non si riescono ad elencare tutte le situazioni associate al
mal di denti

Ignoranza teorica. Non abbiamo una conoscenza che spieghi tutto nel dominio di
interesse.

Ignoranza pratica. Anche se avessimo una conoscenza completa, non riusciamo a
conoscere le condizioni esatte in cui si verifica I’evento (mal di denti del

paziente).
5'\ “\\
-
L=
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Probabilita semplice dll

Qual’¢ la probabilita che la proposizione: “E’ uscito 6” si avveri?

P(N=6) = 1/6 secondo la visione oggettivista.

E’ una probabilita semplice o assoluta perché non ¢ legata al verificarsi di altri eventi.

Estendiamo a piu eventi.
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Connettivi logici ne|l dominio della ﬂ;,_”
probabilita

o La probabilita che si verifichi uno tra piu eventi indipendenti ¢ data dalla somma
delle probabilita

o La probabilita che si verifichino tutti gli eventi indipendenti ¢ data dal prodotto
delle probabilita.

o Nel caso di eventi con una dipendenza tra di loro, appartenenti a insiemi non
disgiunti, occorre correggere la somma e il prodotto.
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Combinazione di probabilita con i a7
connettivi logici (pr'gbabilitc‘x congiunta) %

Qual’¢ la probabilita che la proposizione: “E’ uscito 12” tirando due dadi si avveri?

Probabilita congiunta di due eventi indipendenti

N\

P(N=12) = P(dado, = 6 AND dado, = 6) = P(dado, = 6, dado, = 6) = P(dado, = 6) P(dado, = 6) =
1/6*1/6 = 1/36.

Nel caso di indipendenza, la probabilita di A ¢ B ¢ data dal prodotto delle probabilita:
P(X=A AND Y = B) = P(X=A) P(Y=B) = P(X=6) P(Y=6) = 1/6*1/6 = 1/36

E’ la frequenza con cui uscirebbe la configurazione «doppio 6>» su un numero infinito di lanci.
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Combinazione di probabilita con i a
connettivi logici (pr-gbabili'r& congiunta) %

Qual’¢ la probabilita che la proposizione: “E’ uscito 11” tirando due dadi si avveri?
Nel caso di eventi indipendenti

P(N=11) = P(dado, = 5 AND dado, = 6) OR P(dado, = 6 AND dado, = 5) = 1/6*1/6 + 1/6*1/6 = 2/36

\ / e

Probabilita congiunta di due eventi indipendenti Probabilita Totale

P(N=11) = P(X=5 AND Y = 6) OR P(X=6 AND Y = 5) = 1/6*1/6 + 1/6*1/6 = 1/36 + 1/36 = 2/36
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Combinazione di probabilita con i a7
connettivi logici (pr'gbabili’rc‘x congiunta) %

Qual’¢ la probabilita che la proposizione: “E’ uscito almeno un 6” tirando due dadi si avveri?

P(N=6) = P( (dado, == 6 AND dado, != 6) OR (dado, = 6 AND dado,== 6) OR ((dado, == 6 AND
dado,== 6)) = 1/6*5/6 + 1/6*5/6 + 1/6*¥1/6 = 11/36
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Combinazione di 2 varioabili con ﬁ
dipendenze con gli insiemi

Qual’¢ la probabilita che la proposizione: «E’ uscito almeno un 6» si avveri lanciando 2 dadi?

P(N=6) = P(dado, = 6 OR dado, = 6) — P(dado, = 6 AND dado,=6)=1/6 + 1/6 - 1/6*1/6 =11/36

Non voglio contare due volte la probabilita di ottenere 6 (intersezione tra i due insiemi).

dado, dado,

In generale: P(X=A ORY = B) = P(X=A) + P(Y=B) - P(X=A AND Y=B).
Unione dei due insiemi.

Se gli eventi sono disgiunti, appartengono a due insiemi diversi:
P(X=AORY =B) =P(X=A) + P(Y=B) - 0.
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15
Probabilita di 2 variabili con dipendenza ﬁJ

OR:

(X =AORY =B)=P(X=A)+P(Y=B) — P(X=A AND Y=B) =>
se sono indipendenti = P(X=A)+P(X=B)

Conto due volte gli elementi nell’intersezione dei 2 insiemi, tengo 1 occorrenza.

AND:

P(X=A AND Y = B)= P(X=A) + P(Y=B) - P(X=A OR Y=B) =>
se sono indipendenti = P(X=A) + P(X=B) — (P(X=A) + P(Y=B) - P(X=A AND Y=B)) =
P(X=A) P(Y=B)

Conto due volte gli elementi nell’intersezione dei 2 insiemi, tolgo tutti gli elementi 1 volta, rimane 1
occorrenza di un elemento nell’intersezione.
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Paradosso del compleanno dll

Qual ¢ la probabilita che due compagni di classe siano nati lo stesso giorno?

Si ragione per negazione.

Si considera la data di nascita del primo compagno.

La probabilita che un secondo compagno non sia nato lo stesso giorno ¢ P, = 364/365.
La probabilita che un terzo compagno non sia nato lo stesso giorno dei primi due ¢ P; =
363/365.

La probabilita che due compagni NON siano nati lo stesso giorno sara: P = P1xP2xP3x...
La probabilita che due compagni siano nati lo stesso giorno sara, P, =1—-P
Per un numero di studenti pari a 25 Ptrue ¢ superiore al 50%....
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Dipendenza all

o Cosa succede se X e Y non sono indipendenti, ma Y dipende da X e X ¢
indipendente? P(X) => P(Y)?

o Cosa succede se esiste una relazione funzionale tra X e Y, dove X ¢ indipendente,
mentre Y dipende da quello che fa la variabile X?
o “Y =f(X)” nel dominio dell’analisi funzionale - matematica.
o “P(Y|X)” nel dominio statistico (probabilita condizionata).
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A
Probabilita congiunta e condizionata ﬁ

Probabilita congiunta:
Qual’¢ la probabilita che la proposizione: “E’ uscito 11” tirando due dadi si avveri?

P(N=11) = P(dado, = 5 AND dado, = 6) OR P(dado, = 6 AND dado, = 5) = 1/6*1/6 + 1/6*1/6 =2/36

P(Dado,= 5, Dado, = 6) = 1/36
P(Dado,= 6, Dado, = 5) = 1/36

Probabilita condizionata:
Qual ¢ la probabilita che la proposizione «E’ uscito 11» con due dadi si avveri, quando ho gia tirato un
dado che abbia mostrato 5.

P(N=11| Dado, =5)=1/6 > 2/36=P(N=11) lanciando 2 dadi. = Abbiamo un’incertezza minore.

Un agente cerca di raccogliere pin informazioni possibili per diradare lincertezza e formulare
quindi una soluzione piu certa. I problemi che hanno una natura statistica e che prevedono una
risposta in funzione dei dati in ingressi sono descrivibili con probabilita condizionate.

La probabilita condizionata stabilisce una precedenza, una corrispondenza, una dipendenza funzionale
tra X e Y. Dato X, determino Y. Lo stesso meccanismo che definisce una relazione funzionale
nell’analisi matematica.
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o ofea N o o 1k
Relazione tra probabilita condizionata e “34
congiunta

Nel caso dei dadi, quando c’e’ dipendenza: P(N = 11 | Dado, =5) = 1/6

P(a AND b) =P(a|b) * P(b) P(a AND b) ¢ probabilita congiunta

P(a| b) ¢ probabilita condizionata

P(N=11 AND Dado, = 5) = P(N = 11 | Dado, = 5) * P(Dado, = 5) = (1/6) * (1/6) = 1/36

congiunta condizionata semplice

Consideriamo prima b e poi a.

b =Dado, = 5, restringe le possibili configurazioni. Ne scarta 5/6.

Possiamo anche scrivere:
P(N=11]|Dado, =5)=P(N=11 AND Dado,=5) /P(Dado, =5) =(1/36) / (1/6)=1/6

Potremmo anche scrivere tenendo conto che N e Dado; non sono indipendenti:
P(N=11 AND Dado, =5) =P(X=11) + P(Y=5) - P(X=11 OR Y=5) = 2/36+1/6 - 2/36 = 1/6
perdendo la relazione tra causa ed effetto
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Probabilita condizionata e semplice Lﬁm

Consideriamo un mazzo di 40 carte:

. vogliamo valutare quale sia la probabilita che una carta estratta a caso sia un re
(probabilita semplice)

. vogliamo valutare quale sia la probabilita che una carta estratta a caso sia un re, sapendo
di avere estratto una figura (probabilita condizionata)

P(Y) = probabilita che sia un re

P(X) = probabilita che sia una figura /

Le figure sono 12 in un mazzo di 40 carte
P(Y | X) = P(re | figura) =
1/12+1/12+1/12+1/12=1/3

P(re) = P(Y) = 1/10 l
P(Y) = P(Y/X)P(X)=1/3 12/40=4/40
Graphical model
A.A. 2025-2026 20/56 http:\\borghese.di.unimi.it\
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Probabilita composta di variabili 2.
diper?den'ri =2

Probabilita di avere un re di cuori o un re di quadri
P ((Y=re_cuori) OR (Y =re_quadri)) = P(Y =re_quadri) + P(Y =re_cuori) = 2/40

Probabilita di avere un re di cuori e una figura (non sono indipendenti: il re € una figura!)
P((Y =re_cuori) AND (Y = figura)) # P(Y =re_cuori) P(Y = figura) = 1/40 x 12/40 = 12/1600 - sbagliato

P((Y =re_cuori) AND (Y = figura)) = P(Y=re_cuori) + P(figura)
— P(Y=re_cuori) OR (Y=figura)) = 1/40 + 12/40 — 12/40 = 1/40

Probabilita di avere un re di cuori @ una figura (non sono indipendenti: il re & una figura!)
P((Y =re_cuori) OR (Y = figura)) # P(Y =re_cuori) + P(Y = figura) = 1/40 + 12/40 = 13/40 - sbagliato

P((Y =re_cuori) OR (Y = figura)) = P(Y=re_cuori) + P(figura)
— P(Y=re_cuori) AND (Y=figura)) = 1/40 + 12/40 — 1/40 = 12/40

12 figure
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Inferenza statistica dll
o Calcolo della probabilita di un evento, a partire dall’informazione sugli elementi
che costituiscono 1’evento, collezionata sperimentalmente (visione frequentista).
o Consideriamo tre variabili binarie: Mal di denti, Carie, Cavita in dente, € le
probabilita congiunte (stimate dal dentista in base alla sua esperienza passata):
mal di denti Imal di denti
cavita | lcavita | cavita | lcavita Zp(ai’bj 0 =1
A\
& 3 \ carie 0,108 0,012 0,072 0,008
Icarie 0,016 0,064 0,144 0,576

La nostra “funzione” misura il mal di denti e se c’¢ una cavita (effetto) in
dipendenza o meno della presenza di carie (la causa)
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Marginalizzazione dll
mal di denti Imal di denti
cavita Icavita | cavita Icavita
" Jearie 0,108 0,012 0,072 0,008
Icarie 0,016 0,064 0,144 0,576

P(Y)=) P(Y,z)

zeZ

P(carie) = 0,108 + 0,012 + 0,072 + 0,008 = 0,2

Marginalizzazione rispetto a “carie” =Y (summing out): tutte le variabili diverse da “carie”,
collassano nella sommatoria.

l

mal di denti Imal di denti P(mal di denti) = 0,108 + 0,012 + 0,016 +
. . s s 0,064=0,2
cavita lcavita cavita lcavita
carie 0,108 0,012 0,072 0,008
Icarie 0,016 0,064 0’ 144 0’576 http:\\borghese.di.unimi.it\

23

Esempi di ragionamento statistico Al

mal di denti Imal di denti

P(carie OR mal di denti) = P(carie) + P(mal di

denti) — P(carie AND mal di denti) =

0,108 +0,012+ 0,072 + 0,008 + 0,108 + 0,012

+0,016+0,064 - (0,108 +0,012)=0,2+0,2 —
0,12

lcavita

cavitd | !cavitd | cavita

0,108 0,012

Icarie 0,144 0,576

mal di denti Imal di denti

P(carie AND, mal di denti) = P(carie) + P(mal
di denti) — P(lcarie OR mal i denti) = 0,108 +

cavita lcavita | cavita lcavita

0,012+ 0,074+ 0,008 + 0,108 +0,012+ 0,016
+0,064— (0.28)=02+02 0.12
Icarie
A.A. 2025-2026 24/56 http:\\borghese.di.unimi.it\
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Condizionamento statistico il
mal di denti Imal di denti
cavita lcavita | cavita | lcavita
carie 0,108 0,012 0,072 0,008
Icarie 0,016 0,064 0,144 0,576

Probabilita semplici (assolute):
P(mal di denti) = 0,108 + 0,012 + 0,016 + 0,064 = 0,2
P(!mal di denti) = 0,8

Probabilita condizionate al
Probabilita condizionate: P(a | b) = P(a AND b) / P(b) mal d.' denti: ) .
P(carie| mal di denti) =
P(carie AND mal di denti) /

mal di denti Imal di denti P(mal di denti) - Divido per
PPN | PPN TN | PPN 02
P(caric | mal di denti) cavita | lcavita | cavita | !cavita
. . _ carie 0,54 0,06 0,09 0,01 P(carie | 'mal di denti)
P(carie | tmal i denti) |y ;i 008 | 032 | 018 | 072 | Dividoper0.8
A.A. 2025-2026 25/56 http:\\borghese.di.unimi.it\
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{‘Inferenza statistica: probabilita condizionat%

| mal di denti !mal di denti |

mal di denti Imal di denti

. o s x cavita lcavita cavita lcavita
cavita Icavita | cavita Icavita ! -

carie 0,54 0,06 0,09 0,01 carie 0,108 | 0012 | 0072 0,008

lcarie 0,08 0,32 0,18 0,72 Icarie 0016 | 0064 | 0144 0576
Probabilita condizionata Probabilita congiunta
P(carie| mal di denti) P(carie AND mal di denti)

P(mal di denti) = 0,108 + 0,012 + 0,016 + 0,064 = 0,2
P(!mal di denti) = 0,8

P(carie)=P(Y)=Y P(Y|z)P(z)

= P(Carie | mal di denti)P(mal di denti) + P(Carie | !mal di denti)P(!mal di denti)

= (0,54+0,06) * 0,2 + (0,09+0,01) * 0,8 = 0,2

A.A.2025-2026 26/56
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Overview gl

Probabilita semplice e condizionata

Teorema di Bayes
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Teorema di Bayes (1701-1761) dll
P(X,Y) = P (Y[X)P(X) = P(X|Y)P(Y)

P (X]y) =PEIEX) 'If(?f X)

X = causa Y = effetto

P(Effetto | Causa) P(Causa)
P(Effetto)

P (causaleffetto) =

Thomas Bayes

We usually do not know the statistics of the cause, but we can measure the effect and ,
through frequency, build the statistics of the effect or we know it in advance.

A doctor knows P(Symptons|Causa) and wants to determine P(Causa|Symptoms)

A.A. 2025-2026 28/56 http:\\borghese.di.unimi.it\
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Esempio A - I Aij
Sofiware in Scilab available! finx)

In una citta lavorano due compagnie di taxi:
blu e verde: X = {T\ 1, Tyerde

con una Distribuzione di 85% di taxi verdi e 15% di taxi blu.
P(Taxi = verde) = 0.85
P(Taxi =blu)=0.15

Succede un incidente in cui € coinvolto un taxi.

Un testimone dichiara che il taxi era blu P(Y=blu). Era sera ¢ ’affidabilita del testimone ¢
stata valutata dell’80% (¢ una probabilita condizionata):
P(Y=blu | X =blu) = P(Y=verde | X = verde) = 0.8

Qual ¢ la probabilita che il taxi fosse effettivamente blu?

Non ¢ I’80%!
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Esempio A - II Aij

X = {Taxi = blu, Taxi = verde } Incidente

“Causa” /
0.85 \ 0.15

Y = {Colore = blu, Colore = verde}
“Effetto”
0.8 0.2 o‘y 0.8
Colore Colore Colore

Blu Colore
Verde Verde Blu

- P(Taxi = blu) = Probabilita a-priori = 0.15
- P(Colore = blu | Taxi = blu) = P(Colore = verde | Taxi = verde) — Affidabilita del testimone -
Probabilita condizionata = 0.8

Come combino queste informazioni per ottenere una stima sulla probabilita che il taxi dell’incidente
sia effettivamente blu?

A.A. 2025-2026 30/56 http:\\borghese.di.unimi.it\
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Esempio A - TIT Ai

X = {Taxi = blu, Taxi = verde } Incidente

“Causa” /
0.85 \ 0.15

Y = {Colore = blu, Colore = verde}
“Effetto”
0.8 0.2 Oy 0.8
Inverto la relazione tra causa ed effetto
Colore Colore Colore
Blu

applicando Bayes: Colore
Verde Verde Blu
P(Y | X)P(X
P (x[y) = PP
P(Y)
P(Taxi =blu | Colore = blu) =
P(Colore = blu | Taxi = blu)P(Taxi = blu) / P(Colore = blu)
A.A. 2025-2026 31/56 http:\\borghese.di.unimi.it\
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Esempio A- IV Incidente 2
X = {Taxi = blu, Taxi = verde }

“Causa” 0.85 / \ 0.15

Y = {Colore = blu, Colore = verde}

“Effetto” o.‘zy 0.2 o‘.z/ 0.8

Colore Colore Colore

Verde Blu Verde Colore

Blu

P(Colore = blu) = {Probabilita marginale di Y (probabilita semplice)} =
P(Colore = blu | Taxi = blu)P(Taxi = blu) +
P(Colore = blu | Taxi = verde)P(Taxi = verde) = 0.8*0.15 + 0.2*0.85=0.29

P(Colore = blu | Taxi = blu) = 0.8 {Affidabilita del testimone}
P(Colore = verde | Taxi = verde) = 0.8 {Affidabilita del testimone}

P(Taxi = blu) = 0.15 {Probabilita a-priori che si incontri un taxi blu}
P(Taxi = verde) = 0.85 {Probabilita a-priori che si incontri un taxi verde}

P(Taxi = blu | Colore = blu) = {Teorema di Bayes}
P(Colore=blu | Taxi=blu)P(Taxi=blu) / P(Colore=blu) =0.8%0.15/0.29=0.41  0.15<0.41 << 0.8!!
Pesano anche gli “errori” commessi quando il testimone vede un blu ma era verde!
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Esempio A - V Aij

X = {Taxi = blu, Taxi = verde } Incidente

“Causa” — Molti piu taxi blu.
P(Taxi = verde) = 0.1 0.1 \ 0.9

P(Taxi = blu) = 0.9 -

0.8 0.2
Y = {Colore = blu, Colore = verde} 0.2 0.8
“Effetto” Colore Colore Colore

Colore
Verde Blu Verde Blu

P(Colore = blu | Taxi = blu) = P(Colore = blu | Taxi = blu)P(Taxi = blu) / P(Colore = blu)

P(Colore = blu) = {Probabilita marginale di Y (probabilita semplice)} =
P(Colore = blu | Taxi = blu)P(Taxi = blu) + P(Colore = blu | Taxi = verde)P(Taxi = verde) =
0.8%¥0.9 +0.2*0.1 =0.74
P(Taxi = blu | Colore = blu) = P(Colore = blu | Taxi = blu)P(Taxi = blu) / P(Colore = blu) =
0.8%0.9/0.74=0.97
Testimonianza molto affidabile in questo caso!
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Esempio B - I

Lo strumento principe per lo screaning per il tumore al seno ¢ la radiografia -
(mammografia).

pr

Definiamo X la situazione della donna: X={sana, malata}
Definiamo Y I’esito della mammografia: Y={positiva, negativa}

La percentuale di donne malate sulla popolazione ¢ dell’1%.
P(X) =0.01 — probabilita a-priori.

La sensitivita della mammografia ¢ intorno al 90%:

n positive

sensitivita = => P(Y=positive | X=ill (positive))

ill

La specificita della mammografia ¢ anch’essa intorno al 90%:

n negative

specificita = => P(Y=negative | X=healthy (negative))

healthy

A.A. 2025-2026 34/56 http:\\borghese.di.unimi.it\
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Esempio B - II - Probabilita marginali ﬁJ

X = {Healthy, 111} Screening

Y = {Positive, Negative}
0997 ool

0-yﬁ9 oy- \0.1

Positive ~ Negative Positive Negative

P(Y=Positive | X=III)*P(X=I1) = 0.9 * 0.01 = 0.009
P(Y=Positive | X=Healthy)*P(X=Healthy) = 0.1*0.99 = 0.099

P(Y=Positive) = P(Y=Positive | X=I11)*P(X=Ill) + P(Y=Positive | X=Healthy)*P(X=Healthy) =
0.009 + 0.099 = 0.108 (probabilita marginale di Y=Positive)

10.8% di probabilita di avere un esame positivo a fronte di uno 0.01% di donne malate!
Solo 1o 0,9% proviene da donne effettivamente malate, le altre sono false positive!

35

ik
Esempio B - III - Donne malate ﬁ
10.8% di probabilita di avere un esame positivo a fronte di uno 0.01% di donne malate!
Solo lo 0,9% circa proviene da donne effettivamente malate, le altre sono false positive!
Qual’¢ la probabilita che una donna sia veramente malata se il test risulta positivo?

Applichiamo Bayes P(X=Ill | Y=Positive) - PPV (Positive Predictive Value)

P(X=IIl | Y=Positive) = P(Y=Positive | X=IlI)P(X=IIl) / P(Y=Positive) =
0.09/0.108 = 0.083 (8.3%)

Solo 8.3% delle donne con mammografia positiva sono effettivamente ammalate.

Analizzando la formula del teorema di Bayes, dove ha senso investire per ottenere un
rendimento delle screening maggiore?

A.A. 2025-2026 36/56 http:\\borghese.di.unimi.it\
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Esempio B - IV - Screening negativo :'ZL

X = {Healthy, 111} Screening

Y = {Positive, Negative}
0997 ool

0-yﬁ9 oy- \0.1

Positive ~ Negative Positive Negative

P(Y=Negative | X=I1D)*P(X=Ill) = 0.1 * 0.01 = 0.001
P(Y=Negative | X=Healthy)*P(X=Healthy) = 0.9%0.99 = 0.891

P(Y=Negative) = P(Y=Negative | X=I11)*P(X=Ill) + P(Y=Negative | X=Healthy)*P(X=Healthy) =
0.001 +0.0891 = 0.902 (probabilita marginale di Y=Negative) — piu di 90% esami negativi

Di questi 90% di esami negativi, il 10% circa sono relative a donne in realta malate.

A.A. 2025-2026 37/56 http:\\borghese.di.unimi.it\
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Esempio B - V

P(Y=Positive) = P(Y=Positive | X=Il1)*P(X=Ill) + P(Y=Positive | X=Healthy)*P(X=Healthy) =
0.001 + 0.0891 = 0.902 (probabilita marginale di Y=Negative) — piu di 90% esami negativi

Qual’¢ la probabilita che una donna sia in realta malata se il test risulta negativo?

Applichiamo Bayes P(X=Ill | Y=Negative)

P(X=Ill1 | Y=Negative) = P(Y=Negative | X=I11)P(X=I1l) / P(Y = Negative) =
0.1%0.01/0.891 =0.00112 (0,11%)

Lo 0,11% delle donne malate ricevono una mammografia negativa.

Analizzando la formula del teorema di Bayes, dove ha senso investire per ottenere un
rendimento delle screening maggiore?

A.A. 2025-2026 38/56 http:\\borghese.di.unimi.it\
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Valutazione delle prestazioni dei test :Z fl

binari
Malati Sani
(positivi) (negativi)
Classifico Positivi Veri + Falsi +
Classifico Negativi Falsi - Veri -
Ce ey Veri+ Veri+ Veri+
Sensitivita: = - — -
N (Veri+) +(Falsi—=) Num malati
Specificita: Veri— Veri— _ Veri-
N - (Veri—=) +(Falsi+) Num sani Screening
neg 0-9y \nm
. . 0.1 !0.9 0.9 l\
Positi dicti l Veri + Veri + / / 01
ositive predictive value: = - - itive ~ Negati i
p Nclass_pos (Veri+) + (Falsi+) Positive egative Positive Negativel
Dove conviene investire?
Veri — Veri —
N ive predicti N = : :
egative predictive value Notwsneg  (Veri—) + (Falsi-)
A.A. 2025-2026 39/56 http:\borghese.di.unimi.it\
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Investiamo sulla specificita del test ﬁ

X = {Healthy, 111} Screening

Y = {Positive, Negative}
0.997 \0 01

P(Y=Negative | X=Healthy) = 0.99
O'V !0.99 o‘y 0.1

Positive ~ Negative Positive Negative
P(Y=Positive | X=II1) = 0.9 * 0.01 = 0.009

P(Y=Positive) = P(Y=Positive | X=IIl) + P(Y=Positive | X=Healthy) =
0.009 +0.99*0.01 = 0.0189

P(X=I11| Y=Positive) = P(Y=Positive | X=I11)P(X=Ill) / P(Y=Positive) =
0.009/0.0189=0.476 =47,6% >> 8.3%

A.A. 2025-2026 40/56 http:\\borghese.di.unimi.it\
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Investiamo sulla Sensitivita del test il

X = {Healthy, 111} Screening

Y = {Positive, Negative}
0997 \0 01

P(Y=Positive | X=111) = 0.99

Oy 0.9 0.9‘y X}.m

Positive ~ Negative Positive Negative
P(Y=Positive | X=Ill) = 0.99 * 0.01 = 0.0099
P(Y=Positive) = P(Y=Positive | X=Ill) + P(Y=Positive | X=Healthy) =
0.0099 +0.99%0.1 =0. 1098

P(X=Ill | Y=Positive) = P(Y=Positive | X=I11)P(X=I1I) / P(Y=Positive) =
=0.0099/0.1098 = 0.09 = 9% > 8.3%.
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Esempio B - VI Aij

X = {Healthy, 111} Screening

Y = {Positive, Negative}
0.997 \0 01

Falsi negativi?
P(X=111| Y = Negative)? Oy 09 0 ‘9/ 0.1

Positive ~ Negative Positive Negative
P(Y=Negative | X=IlI)= 0.1 * 0.01 = 0.001
P(Y=Negative) = P(Y=Negative | X=Ill) + P(Y=Positive | X=Healthy) =
0.001 +0.99%0.9 = 0.891

P(X=Ill | Y=Negative) = P(Y=Negative | X=I11)P(X=Ill) / P(Y=Negative) = 0.001/0.891 =0.11%
Una donna ogni mille non viene diagnosticata!
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Esempio C - I Ai

Myself
o0 C X
4.//10/ \ 6/10 000 lee
Q00| 00
yy 6/8 5‘/8/ 3/8
apple orange apple orange

1) Supponiamo di conoscere P(X), probabilita di scelta del box,

- P(blu)=0.6

- P(rosso) = 0.4

e la P(Y|X), probabilita di avere una mela (arancia) se scegliamo un certo box,

possiamo determinare la probabilita assoluta (semplice) di scegliere un certo frutto, P(Y)?

2) Supponiamo di non conoscere P(X), probabilita di scelta del box, conosciamo la probabilita
P(Y[X) e P(Y).

Possiamo determinare P(X)?

A.A.2025-2026 43/56 http:\\borghese.di.unimi.it\
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1) Determino P(Y = Apple) 2

P(Y=apple | X = blue) = 5/8 - nota Myself

P(Y=apple | X =red) = 2/8 - nota /
4/10 \ 6/10
P(Y=apple) # (2+5)/8="7/8
2/?/ 6/8 5‘/2/ 3/8

apple orange apple

8 24 30

P(Y=apple | X = blue) + P(Y=orange | X =blue) =1 . ‘
P(Y=apple | X = red) + P(Y=orange | X =red) = 1 Y Y )
L X J

P(Y=apple) = P(Y=apple | X = blue) P(X=blue) +
P(Y=apple | X = red) P(X=red) = 5/8*6/10 + 2/8*4/10 = 38/80 # 7/8

A.A. 2025-2026 44/56 http:\\borghese.di.unimi.it\

44

22



1) Determino P(Y = orange) :

P(Y=apple | X = blue) = 5/8 - nota Myself

P(Y=orange | X = blue) = 3/8 - nota /
4/10 \ 6/10

P(Y=apple | X =red) =2/8 - nota
P(Y=orange | X =red) = 6/8 — nota

2/8 6/8
P(Y=apple) # (2+5) /8 ="7/8 / SA/S/ 3/8

P(Y=orange) # (6+3)/8 = 9/8 apple orange apple
8 24 30
o0
00
000

P(Y=orange) = P(Y=orange | X = blue) P(X=blue) +

P(Y=orange | X = red) P(X=red) = 3/8*%6/10 + 6/8*4/10 = 42/80 # 9/8
P(Y=apple) = 38/80
P(Y=apple) + P(Y=orange) = 1

A.A. 2025-2026 45/56 htp:\\borghese.di. unimi.it\
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Determino P(X=red | Y) L f
Myself
P(Y | X)P(X)
PXIY) = P(Y) 4M \6/10
2/?/ 6/8 5‘/2/ 3/8
apple orange apple orange
8 24 30 18

P(X=red | Y=orange) = P(Y=orange|X=red) P(X=red)/P(Y=orange) =
(6/8*4/10) / (21/40) = 24/42 > 4/10

P(X=red | Y=apple) = P(Y=apple | X=red) P(X=red) / P(Y=apple) =
(2/8*4/10) / (19/40) = 8/38 << 4/10

A.A. 2025-2026 46/56 http:\\borghese.di.unimi.it\
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Determino P(X | Y)

dli
Myself
P(Y| X)P(X
P(X)Y) =FELDAE) v \eno
2/‘3V 6/8 5‘/8/ 3/8
apple orange apple orange
8 24 30 18

P(X=red | Y=orange) = 24/42 > 4/10
P(X=blue | Y=orange) = P(Y=orange|X=blue) P(X=blue)/P(Y=orange) =
(3/8*6/10) / (21/40) = 18/42 < 6/10

P(X=red | Y=apple) = 8/38 << 4/10
P(X=blue | Y=apple) = P(Y=apple | X=blue) P(X=blue) / P(Y=apple) =
(5/8*6/10) / (19/40) = 30/38 >> 6/10

A.A. 2025-2026 47/56 htp:\\borghese.di. unimi.it\
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Interpretazione 2
Myself
_PY | X)P(X)
PXY) = P(Y) 4% \ 6/10
P(X=red | Y=apple) = 8/38 << 4/10 2/ ?/ 6/8 5‘/2/ 3/8
P(X=blue | Y=apple) = 30/38 >> 6/10
apple orange apple orange
8 24 30 18

Correggo la probabilita a-priori, P(X) con le informazioni raccolte, ®
P(Y), e ottengo una nuova valutazione della probabilita di X (che O
dipende da Y), P(X | Y) detta probabilita a-posteriori. O

Red Blue
Apple Yi
Orange 4/10*6/8=24/80 - 24 6/10*3/8=18/80 - 18
A.A. 2025-2026 48/56 Xl http:\\borghese.di.unimi.it\
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Importanza

P (X]y) =ZEIXPX) 'P)((;‘)D )

Myself 000 [680

000 |®@®e®
4/10/ \ 6/10
‘Blue Box.
2/‘27 6/8 5‘/8/ 3/8

apple orange apple orange
8 24 30 18

Questo ¢ un tipico esempio di problema inverso.

Raccogliamo delle misure Y e vogliamo determinare da quale sistema (modello
probabilistico) possono essere state generate.

Possiamo inserire delle informazioni statistiche (a-priori) su X, cio¢ sulla forma del
modello (e.g. smoothness)

A.A.2025-2026 49/56 http:\\borghese.di.unimi.it\
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Graphical models dll

A graphical model o modello probabilistico su grafo (PGM) ¢ un modello
probabilistico che evidenzia le dipendenze tra le variabili randomiche (puo
evolvere eventualmente in un albero). Viene utilizzato nell’inferenza statistica.

Probability distribution of X1
P(X1)

X1 o X : X1 is the common ancestor
of X2, X3 and X4
03 o7
P(X2|X1)
x1
Conditional probability o 1 Y
distribution of X2 o 01 03 X2 X2 is the parent and the most recent

knowing X1 X2 e common ancestor of X3 and X4
9 {

P(X3|X2) » a4 P(X4|X2)

X2 x2
13 X3 X4 A X4 is a child of X2
0 05 01 0 01 02
x3 X4
1 05| 09 1 09 08
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Estensione a piu variabili Ai

Sostituisco un’espressione logica a una variabile:
PX|Y;;Y,) if (P(Y,)) =y, and P(Y,) =y, ) then P(X)=X

Z=Y, and mal di denti Imal di denti
cavita lcavita | cavita Icavita
carie 0,012 0,072 0,008
|lcarie 0,064 0,144 0,576

Dalla tabella delle probabilita congiunte ricaviamo (Z = mal di denti AND cavita):
P(carie; Z) = P(carie AND (mal di denti AND cavita)) = 0,108
P(carie | Z) = P(carie | (mal di denti AND cavita)) =
P(carie AND (mal di denti AND cavita)) / P(mal di denti AND cavita) =
0,108 /(0,016 + 0,108)= 0,108 / 0,124 = 0,871 — complessa

Carie, mal di denti e cavita non sono indipendenti, come trattiamo ’AND?

AA. http:\\borghese.di.unimi.it\
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4
!
. (LAY . ofe 2
: Estensione a piu variabili dll
P(X|Y;Y,) if (P(Y,) =y, and P(Y;) =y, ) then P(X)=x
Z=Y,and Y,
mal di denti Imal di denti
cavita | lcavita | cavita | lcavita
& “\\ 0,012 | 0,072 | 0,008
ey 0,064 | 0144 | 0576
=
P(carie | Z) = P(carie | (mal di denti AND cavita)) =
P(carie AND (mal di denti AND cavita)) / P(mal di denti AND cavita) =
0,108 /(0,016 +0,108)= 0,108 /0,124 = 0,871
P(mal di denti AND cavita | carie) = P((mal di denti AND cavita AND carie) / P(carie) =
0,108/0,2=0,54
A.A. 2025-2026 52/56 http:\\borghese.di.unimi.it\
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Z=Y,and Y,

Estensione a piu variabili
P(X|Y;Y,) if (P(Y}) =y, and P(Y;) =y, ) then P(X)=x

P(X AND Y) = P(X)P(Y)

A.A. 2025-2026

mal di denti Imal di denti
cavita lcavita | cavita Icavita
carie 0,012 0,072 0,008
\‘A\ |lcarie 0,064 0,144 0,576

Come lo possiamo trattare invece se sono indipendenti?

53/56

Carie, mal di denti e cavita non sono indipendenti, come trattiamo ’AND?

<&

P(carie AND mal di denti) = P(carie) + P(mal di denti) — P(carie OR mal di denti) = 0,108
+0,012+ 0,072+ 0,008 + 0,108 + 0,012+ 0,016 + 0,064 — (0.28) = 0.2+ 0.2 - 0.28 =0.12

http:\\borghese.di.unimi.it\
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probabilita.

stessa causa

A.A.2025-2026

In generale: P(Causa | Effetto, and Effetto, and ... Effettoy) =

Naive Bayes

Sostituiamo un’espressione a una variabile logica:
P(X| (Y, AND Y,))*P(Y, AND Y,) = P(Y,AND Y, | X) * P (X)

Sono cio¢ condizionatamente indipendenti, cio¢ porta a:
P((Y; AND Y,) | X) * P (X) = (P(Y, | X) * P(Y, | X)) * P(X)

Bayes

Introduciamo un’altra ipotesi. Cosa succede se Y, e Y, sono indipendenti? Dipendono
entrambe da X ma non dipendono tra di loro.

<&

In questo caso viene semplificato il calcolo dell’ AND, che viene calcolato come prodotto delle

Modello Naive Bayes Gli effetti sono supposti indipendenti tra loro e dipendono da una

N
HP(Effettol. |Causa)
i=1

54/56
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Riepilogo

_P(Y|X)P(X) _P(X.Y)

PO = P(Y) P(Y)

Teorema di Bayes

Lega probabilita condizionate, congiunte, semplici (marginali)

Consente di inferire la probabilita di un evento causa, X, a partire dalla
probabilita associata alla frequenza di una certa misura, effetto, P(Y),
dalla frequenza relativa dell’evento associato alla misura, P(Y), e dalla

probabilita nota a-priori, P(X), della causa.

La probabilita P(X|Y) viene per questo detta probabilita a-posteriori ed €

una probabilita condizionata.

Viene utilizzata nei problemi inversi.

A.A. 2025-2026 55/56
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Overview

Probabilita semplice e condizionata

Teorema di Bayes

A.A.2025-2026 56/56

http:\\borghese.di.unimi.it\

56

28



	Slide 1
	Slide 2: Overview
	Slide 3: Lo statistico
	Slide 4: Incertezza
	Slide 5: Probabilità (visione frequentista)
	Slide 6: Altri modi di definire la probabilità
	Slide 7: Semantica della probabilità 
	Slide 8: Problematiche associate alla probabilità
	Slide 9: Probabilità semplice
	Slide 10: Connettivi logici nel dominio della probabilità
	Slide 11: Combinazione di probabilità con i connettivi logici (probabilità congiunta)
	Slide 12: Combinazione di probabilità con i connettivi logici (probabilità congiunta)
	Slide 13: Combinazione di probabilità con i connettivi logici (probabilità congiunta)
	Slide 14: Combinazione di 2 varioabili con dipendenze con gli insiemi
	Slide 15: Probabilità di 2 variabili con dipendenza
	Slide 16: Paradosso del compleanno
	Slide 17: Dipendenza
	Slide 18: Probabilità congiunta e condizionata
	Slide 19: Relazione tra probabilità condizionata e congiunta
	Slide 20: Probabilità condizionata e semplice
	Slide 21: Probabilità composta di variabili dipendenti
	Slide 22: Inferenza statistica
	Slide 23: Marginalizzazione
	Slide 24: Esempi di ragionamento statistico
	Slide 25: Condizionamento statistico
	Slide 26: Inferenza statistica: probabilità condizionata
	Slide 27: Overview
	Slide 28: Teorema di Bayes (1701-1761)
	Slide 29: Esempio A - I
	Slide 30: Esempio A - II
	Slide 31: Esempio A - III
	Slide 32: Esempio A- IV
	Slide 33: Esempio A - V
	Slide 34
	Slide 35: Esempio B – II – Probabilità marginali 
	Slide 36: Esempio B – III – Donne malate
	Slide 37: Esempio B – IV – Screening negativo 
	Slide 38: Esempio B - V
	Slide 39: Valutazione delle prestazioni dei test binari
	Slide 40: Investiamo sulla specificità del test
	Slide 41: Investiamo sulla Sensitività del test
	Slide 42: Esempio B - VI  
	Slide 43: Esempio C - I
	Slide 44: 1) Determino P(Y = Apple)
	Slide 45: 1) Determino P(Y = orange)
	Slide 46: Determino P(X=red | Y)
	Slide 47: Determino P(X | Y)
	Slide 48: Interpretazione
	Slide 49: Importanza
	Slide 50: Graphical models
	Slide 51: Estensione a più variabili
	Slide 52: Estensione a più variabili
	Slide 53: Estensione a più variabili
	Slide 54: Naïve Bayes
	Slide 55: Riepilogo
	Slide 56: Overview

