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Overview

Probabilità semplice e condizionata

Teorema di Bayes
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Lo statistico
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Incertezza

 Le azioni “intelligenti” vengono fatte verso un ambiente che presenta una certa 

dose di incertezza nel futuro.

E.g. Dobbiamo andare a Malpensa. Quanto tempo prima dobbiamo partire?

Dalla nostra esperienza deriviamo che 60 minuti sono sufficienti se.....

Rimane un po’ di incertezza. Se partiamo 120 minuti prima ci teniamo un margine, 

ma passeremo facilmente tanto tempo in aereoporto senza fare nulla.

Quando prendiamo una decisione, teniamo conto in modo più o meno esplicito di 

questi elementi di incertezza legati al risultato delle azioni. Questi elementi hanno 

a che fare con a statistica.
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Probabilità (visione frequentista)

Per il teorema del limite centrale la frequenza di un evento su infinite realizzazioni è uguale alla sua 

probabilità.

La probabilità che si verifichi uno tra i vari casi possibili è sempre 1. Ovverosia la somma delle 

probabilità di tutti gli eventi (se mutuamente esclusivi) somma 1.
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Altri modi di definire la probabilità

 Visione oggettivista. Tendenza di un fenomeno ad accadere. Se lanciamo una moneta in aria, 

possiamo affermare che avremo 50% di probabilità che esca testa e 50% che esca croce. Ci 

aspettiamo che questa affermazione venga supportata quando effettuiamo infiniti esperimenti.

 Visione soggettivista. La probabilità viene espressa come credenza del soggetto. “Secondo me 

la probabilità di avere una carie è del 10%”. Non dipendono da un ragionamento fisico e 

rappresentano una probabilità a-priori. Deve potere essere corretta quando arrivano evidenze 

sperimentali. 
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Semantica della probabilità

Possiamo ottenere un grado di credenza (belief) nell’affermazione. 

Questa potrà rivelarsi vera o falsa con una certa probabilità (e.g. «c’è

una carie?»).

La probabilità è basata sulla conoscenza (a-priori) non sull’evento che si 

è già verificato!! La conoscenza a-priori e’ ricavata dall’analisi di tutti 

gli altri casi già osservati o su una conoscenza oggettiva o soggettiva 

dell’evento.

La probabilità ci consente di trattare le diverse possibilità di un 

evento.

E ci consente di associare agli eventi un grado di credenza, prima 

che si verifichino.
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Problematiche associate alla probabilità

Problema della visione frequentista: 

- Omogeneità del campione (classe di riferimento). Come posso effettuare la 

media di eventi in modo “sicuro”? 

- Limitatezza del campione 

Laziness (svogliatezza). Non si riescono ad elencare tutte le situazioni associate al 

mal di denti

Ignoranza teorica. Non abbiamo una conoscenza che spieghi tutto nel dominio di 

interesse.

Ignoranza pratica. Anche se avessimo una conoscenza completa, non riusciamo a 

conoscere le condizioni esatte in cui si verifica l’evento (mal di denti del 

paziente).
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Probabilità semplice

Qual’è la probabilità che la proposizione: “E’ uscito 6” si avveri?

P(N=6) = 1/6 secondo la visione oggettivista.

E’ una probabilità semplice o assoluta perché non è legata al verificarsi di altri eventi.

Estendiamo a più eventi.
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Connettivi logici nel dominio della 
probabilità

 La probabilità che si verifichi uno tra più eventi indipendenti è data dalla somma 

delle probabilità

 La probabilità che si verifichino tutti gli eventi indipendenti è data dal prodotto 

delle probabilità.

 Nel caso di eventi con una dipendenza tra di loro, appartenenti a insiemi non 

disgiunti, occorre correggere la somma e il prodotto.

9

10



6

11/56 http:\\borghese.di.unimi.it\A.A. 2025-2026

Combinazione di probabilità con i 
connettivi logici (probabilità congiunta)

Qual’è la probabilità che la proposizione: “E’ uscito 12” tirando due dadi si avveri?

P(N=12) = P(dado1 = 6 AND dado2 = 6) = P(dado1 = 6, dado2 = 6) = P(dado1 = 6) P(dado2 = 6) = 

1/6*1/6 = 1/36.

Nel caso di indipendenza, la probabilità di A e B è data dal prodotto delle probabilità:

P(X = A AND Y = B) = P(X=A) P(Y=B) = P(X=6) P(Y=6) = 1/6*1/6 = 1/36

E’ la frequenza con cui uscirebbe la configurazione «doppio 6>» su un numero infinito di lanci.

Probabilità congiunta di due eventi indipendenti 
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Combinazione di probabilità con i 
connettivi logici (probabilità congiunta)

Qual’è la probabilità che la proposizione: “E’ uscito 11” tirando due dadi si avveri?

Nel caso di eventi indipendenti

P(N=11) = P(dado1 = 5 AND dado2 = 6) OR P(dado1 = 6 AND dado2 = 5) = 1/6*1/6  +  1/6*1/6 = 2/36

P(N=11) = P(X=5 AND Y = 6) OR P(X=6 AND Y = 5) = 1/6*1/6 + 1/6*1/6 = 1/36 + 1/36 = 2/36

Probabilità congiunta di due eventi indipendenti                               Probabilità Totale 
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Combinazione di probabilità con i 
connettivi logici (probabilità congiunta)

Qual’è la probabilità che la proposizione: “E’ uscito almeno un 6” tirando due dadi si avveri?

P(N=6) = P( (dado1 == 6 AND dado2 != 6) OR (dado1 != 6 AND dado2 == 6) OR ((dado1 == 6 AND 

dado2 == 6)) = 1/6*5/6 + 1/6*5/6 + 1/6*1/6 = 11/36
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Combinazione di 2 varioabili con 
dipendenze con gli insiemi

Qual’è la probabilità che la proposizione: «E’ uscito almeno un 6» si avveri lanciando 2 dadi?

P(N=6) = P(dado1 = 6 OR dado2 = 6) – P(dado1 = 6 AND dado2 = 6) = 1/6 + 1/6  - 1/6*1/6 = 11/36

Non voglio contare due volte la probabilità di ottenere 6 (intersezione tra i due insiemi).

In generale: P(X = A OR Y = B) = P(X=A) + P(Y=B) – P(X=A AND Y=B). 

Unione dei due insiemi.

Se gli eventi sono disgiunti, appartengono a due insiemi diversi: 

P(X = A OR Y = B) = P(X=A) + P(Y=B) – 0. 

1. 1.
3.

4. 5. 6.
5.

4.
3.6.

dado1 dado2
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Probabilità di 2 variabili con dipendenza

OR:

(X = A OR Y = B)=P(X=A)+P(Y=B) – P(X=A AND Y=B) => 

se sono indipendenti = P(X=A)+P(X=B)

Conto due volte gli elementi nell’intersezione dei 2 insiemi, tengo 1 occorrenza.

AND:

P(X = A AND Y = B)= P(X=A) + P(Y=B) – P(X=A OR Y=B) => 

se sono indipendenti = P(X=A) + P(X=B) – (P(X=A) + P(Y=B) – P(X=A AND Y=B)) =  

P(X=A) P(Y=B)

Conto due volte gli elementi nell’intersezione dei 2 insiemi, tolgo tutti gli elementi 1 volta, rimane 1 

occorrenza di un elemento nell’intersezione.
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Paradosso del compleanno

Qual è la probabilità che due compagni di classe siano nati lo stesso giorno?

Si ragione per negazione. 

Si considera la data di nascita del primo compagno.

La probabilità che un secondo compagno non sia nato lo stesso giorno è P2 =  364/365.

La probabilità che un terzo compagno non sia nato lo stesso giorno dei primi due è P3 =  

363/365.

.....

La probabilità che due compagni NON siano nati lo stesso giorno sarà: P = P1xP2xP3x...

La probabilità che due compagni siano nati lo stesso giorno sarà, Ptrue = 1 – P

Per un numero di studenti pari a 25 Ptrue è superiore al 50%....
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Dipendenza

 Cosa succede se X e Y non sono indipendenti, ma Y dipende da X e X è 

indipendente? P(X) => P(Y)?

 Cosa succede se esiste una relazione funzionale tra X e Y, dove X è indipendente, 

mentre Y dipende da quello che fa la variabile X?

  “Y = f(X)” nel dominio dell’analisi funzionale - matematica. 

   “P(Y|X)” nel dominio statistico (probabilità condizionata).
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Probabilità congiunta e condizionata
Probabilità congiunta:

Qual’è la probabilità che la proposizione: “E’ uscito 11” tirando due dadi si avveri?

P(N=11) = P(dado1 = 5 AND dado2 = 6) OR P(dado1 = 6 AND dado2 = 5) = 1/6*1/6  +  1/6*1/6 = 2/36

P(Dado1= 5, Dado2 = 6) = 1/36

P(Dado1= 6, Dado2 = 5) = 1/36

Probabilità condizionata:

Qual è la probabilità che la proposizione «E’ uscito 11» con due dadi si avveri, quando ho già tirato un 

dado che abbia mostrato 5. 

P(N=11 | Dado1 = 5) = 1/6   >  2/36 = P(N=11) lanciando 2 dadi.     Abbiamo un’incertezza minore.

Un agente cerca di raccogliere più informazioni possibili per diradare l’incertezza e formulare 

quindi una soluzione più certa. I problemi che hanno una natura statistica e che prevedono una 

risposta in funzione dei dati in ingressi sono descrivibili con probabilità condizionate.

La probabilità condizionata stabilisce una precedenza, una corrispondenza, una dipendenza funzionale 

tra X e Y. Dato X, determino Y. Lo stesso meccanismo che definisce una relazione funzionale 

nell’analisi matematica. 
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Relazione tra probabilità condizionata e 
congiunta

Nel caso dei dadi, quando c’e’ dipendenza: P(N = 11 | Dado1 = 5) = 1/6 

P(a AND b) = P(a | b) * P(b)    P(a AND b) è probabilità congiunta

P(a | b) è probabilità condizionata

P(N=11 AND Dado1 = 5) = P(N = 11 | Dado1 = 5) * P(Dado1 = 5) = (1/6) * (1/6) = 1/36

congiunta condizionata semplice

Consideriamo prima b e poi a. 

b = Dado1 = 5, restringe le possibili configurazioni. Ne scarta 5/6.

Possiamo anche scrivere:

P(N = 11 | Dado1 = 5) = P(N=11 AND Dado1 = 5) / P(Dado1 = 5)   = (1/36)  /  (1/6) = 1/6  

Potremmo anche scrivere tenendo conto che N e Dado1 non sono indipendenti:

P(N=11 AND Dado1 = 5) = P(X=11) + P(Y=5) – P(X=11 OR Y=5) = 2/36+1/6 – 2/36 = 1/6

perdendo la relazione tra causa ed effetto
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Probabilità condizionata e semplice

Consideriamo un mazzo di 40 carte: 

• vogliamo valutare quale sia la probabilità che una carta estratta a caso sia un re 

(probabilità semplice)

• vogliamo valutare quale sia la probabilità che una carta estratta a caso sia un re, sapendo 

di avere estratto una figura (probabilità condizionata)

P(Y) = probabilità che sia un re

P(X) = probabilità che sia una figura

Figura

Pr(12/40)
!Figura

Pr(28/40

RE

Pr(1/3)

Le figure sono 12 in un mazzo di 40 carte

P(Y | X) = P(re | figura) = 

1/12+1/12+1/12+1/12 = 1/3

Graphical model

P(re) = P(Y) = 1/10 
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Probabilità composta di variabili 
dipendenti

Probabilità di avere un re di cuori o un re di quadri

P ((Y= re_cuori) OR (Y = re_quadri)) = P(Y = re_quadri) + P(Y = re_cuori) = 2/40

Probabilità di avere un re di cuori e una figura (non sono indipendenti: il re è una figura!)

P((Y = re_cuori) AND (Y = figura)) ≠ P(Y = re_cuori) P(Y = figura) = 1/40 x 12/40 = 12/1600 - sbagliato

P((Y = re_cuori) AND (Y = figura)) = P(Y=re_cuori) + P(figura) 

– P(Y=re_cuori) OR (Y=figura)) = 1/40 + 12/40 – 12/40 = 1/40

Probabilità di avere un re di cuori o una figura (non sono indipendenti: il re è una figura!)

P((Y = re_cuori) OR (Y = figura)) ≠ P(Y = re_cuori) + P(Y = figura) = 1/40 + 12/40 = 13/40 - sbagliato

P((Y = re_cuori) OR (Y = figura)) = P(Y=re_cuori) + P(figura) 

– P(Y=re_cuori) AND (Y=figura)) = 1/40 + 12/40 – 1/40 = 12/40

4 re

12 figure
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Inferenza statistica

 Calcolo della probabilità di un evento, a partire dall’informazione sugli elementi 

che costituiscono l’evento, collezionata sperimentalmente (visione frequentista). 

 Consideriamo tre variabili binarie: Mal di denti, Carie, Cavità in dente, e le 

probabilità congiunte (stimate dal dentista in base alla sua esperienza passata):

mal di denti !mal di denti

cavità !cavità cavità !cavità

carie 0,108 0,012 0,072 0,008

!carie 0,016 0,064 0,144 0,576

 =1),,( kji cbaP

La nostra “funzione” misura il mal di denti e se c’è una cavità (effetto) in

dipendenza o meno della presenza di carie (la causa)

21
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Marginalizzazione
mal di denti !mal di denti

cavità !cavità cavità !cavità

carie 0,108 0,012 0,072 0,008

!carie 0,016 0,064 0,144 0,576

P(carie) = 0,108 + 0,012 + 0,072 + 0,008 = 0,2

Marginalizzazione rispetto a “carie” = Y (summing out): tutte le variabili diverse da “carie”, 

collassano nella sommatoria.




=
Zz

zYPYP ),()(

mal di denti !mal di denti

cavità !cavità cavità !cavità

carie 0,108 0,012 0,072 0,008

!carie 0,016 0,064 0,144 0,576

P(mal di denti) = 0,108 + 0,012 + 0,016 + 

0,064 = 0,2
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Esempi di ragionamento statistico

mal di denti !mal di denti

cavità !cavità cavità !cavità

carie 0,108 0,012 0,072 0,008

!carie 0,016 0,064 0,144 0,576

P(carie OR mal di denti) =  P(carie) + P(mal di 

denti) – P(carie AND mal di denti) = 

0,108 + 0,012 + 0,072 + 0,008 + 0,108 + 0,012 

+ 0,016 + 0,064 - (0,108 + 0,012) = 0,2 + 0,2 –

0,12 = 0,28

P(carie AND mal di denti) = P(carie) + P(mal 

di denti) – P(carie OR mal di denti) = 0,108 + 

0,012 + 0,072 + 0,008 + 0,108 + 0,012 + 0,016 

+ 0,064 – (0.28) = 0.2 + 0.2 – 0.28 = 0.12 

mal di denti !mal di denti

cavità !cavità cavità !cavità

carie 0,108 0,012 0,072 0,008

!carie 0,016 0,064 0,144 0,576
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Condizionamento statistico
mal di denti !mal di denti

cavità !cavità cavità !cavità

carie 0,108 0,012 0,072 0,008

!carie 0,016 0,064 0,144 0,576

Probabilità semplici (assolute):

P(mal di denti) = 0,108 + 0,012 + 0,016 + 0,064 = 0,2 

P(!mal di denti) = 0,8

Probabilità condizionate: P(a | b) = P(a AND b) / P(b) 

mal di denti !mal di denti

cavità !cavità cavità !cavità

carie 0,54 0,06 0,09 0,01

!carie 0,08 0,32 0,18 0,72

Probabilità condizionate al 

mal di denti:

P(carie| mal di denti) = 

P(carie AND mal di denti) / 

P(mal di denti) - Divido per 

0.2 

P(carie | !mal di denti)

Divido per 0.8 

P(carie | mal di denti)

P(carie | !mal di denti)
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Inferenza statistica: probabilità condizionata




==
Zz

zPzYPYPcarieP )()|()()(

= P(Carie | mal di denti)P(mal di denti) + P(Carie | !mal di denti)P(!mal di denti) 

P(mal di denti) = 0,108 + 0,012 + 0,016 + 0,064 = 0,2 

P(!mal di denti) = 0,8

=   (0,54+0,06) * 0,2 + (0,09+0,01) * 0,8 = 0,2

mal di denti !mal di denti

cavità !cavità cavità !cavità

carie 0,54 0,06 0,09 0,01

!carie 0,08 0,32 0,18 0,72

Probabilità condizionata Probabilità congiunta 

P(carie| mal di denti) P(carie AND mal di denti)
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Overview

Probabilità semplice e condizionata

Teorema di Bayes
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Teorema di Bayes (1701-1761)

P(X,Y) = P (Y|X)P(X) = P(X|Y)P(Y)

P (X|Y) 
)(

)()|(

YP

XPXYP
=

P (causa|effetto) 

X = causa Y = effetto

)(

)()|(

EffettoP

CausaPCausaEffettoP
=

We usually do not know the statistics of the cause, but we can measure the effect and , 

through frequency, build the statistics of the effect or we know it in advance.

A doctor knows P(Symptons|Causa) and wants to determine P(Causa|Symptoms)

Thomas Bayes
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Esempio A - I
Software in Scilab available!

In una città lavorano due compagnie di taxi: 

blu e verde: X = {Tblu, Tverde} 

con una Distribuzione di 85% di taxi verdi e 15% di taxi blu.

P(Taxi = verde) = 0.85

P(Taxi = blu) = 0.15

Succede un incidente in cui è coinvolto un taxi.

Un testimone dichiara che il taxi era blu P(Y=blu). Era sera e l’affidabilità del testimone è 

stata valutata dell’80% (è una probabilità condizionata):

P(Y=blu | X =blu) = P(Y=verde | X = verde) = 0.8

Qual è la probabilità che il taxi fosse effettivamente blu?

Non è l’80%!
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Esempio A - II

Incidente

Taxi verde Taxi blu

0.8 0.2 0.2 0.8

0.85 0.15

X = {Taxi = blu, Taxi = verde } 

“Causa”

Y = {Colore = blu, Colore = verde}

“Effetto”

- P(Taxi = blu) = Probabilità a-priori = 0.15

- P(Colore = blu | Taxi = blu) = P(Colore = verde | Taxi = verde) – Affidabilità del testimone -

Probabilità condizionata = 0.8

Come combino queste informazioni per ottenere una stima sulla probabilità che il taxi dell’incidente 

sia effettivamente blu?

Colore

Verde

Colore

Blu
Colore

Verde
Colore

Blu

29
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Esempio A - III

Incidente

Taxi verde Taxi blu

0.8 0.2 0.2 0.8

Colore

Verde

Colore

Blu

0.85 0.15

Colore

Verde
Colore

Blu

Inverto la relazione tra causa ed effetto 

applicando Bayes:

X = {Taxi = blu, Taxi = verde } 

“Causa”

Y = {Colore = blu, Colore = verde}

“Effetto”

P (X|Y) 
)(

)()|(

YP

XPXYP
=

P(Taxi = blu  | Colore = blu) = 

P(Colore = blu | Taxi = blu)P(Taxi = blu) / P(Colore = blu)
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Esempio A- IV Incidente

Taxi verde Taxi blu

0.8 0.2 0.2 0.8

Colore

Verde
Colore

Blu

0.85 0.15

Colore

Verde
Colore

Blu

P(Colore = blu) = {Probabilità marginale di Y (probabilità semplice)} =  

P(Colore = blu | Taxi = blu)P(Taxi = blu) + 

P(Colore = blu | Taxi = verde)P(Taxi = verde) = 0.8*0.15 + 0.2*0.85 = 0.29

P(Colore = blu | Taxi = blu) = 0.8  {Affidabilità del testimone}

P(Colore = verde | Taxi = verde) = 0.8  {Affidabilità del testimone}

P(Taxi = blu) = 0.15 {Probabilità a-priori che si incontri un taxi blu}

P(Taxi = verde) = 0.85 {Probabilità a-priori che si incontri un taxi verde}

X = {Taxi = blu, Taxi = verde } 

“Causa”

Y = {Colore = blu, Colore = verde}

“Effetto”

P(Taxi = blu | Colore = blu) = {Teorema di Bayes}

P(Colore=blu | Taxi=blu)P(Taxi=blu) /  P(Colore=blu) = 0.8*0.15 / 0.29 = 0.41      0.15 < 0.41 << 0.8!!

Pesano anche gli “errori” commessi quando il testimone vede un blu ma era verde!
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Esempio A - V

Incidente

Taxi verde Taxi blu

0.8 0.2 0.2 0.8

0.1 0.9

X = {Taxi = blu, Taxi = verde } 

“Causa” – Molti più taxi blu.

P(Taxi = verde) = 0.1

P(Taxi = blu) = 0.9

Y = {Colore = blu, Colore = verde}

“Effetto”
Colore

Verde

Colore

Blu
Colore

Verde
Colore

Blu

P(Colore = blu) = {Probabilità marginale di Y (probabilità semplice)} =  

P(Colore = blu | Taxi = blu)P(Taxi = blu) + P(Colore = blu | Taxi = verde)P(Taxi = verde) = 

0.8*0.9 + 0.2*0.1 = 0.74

P(Colore = blu | Taxi = blu) = P(Colore = blu | Taxi = blu)P(Taxi = blu) / P(Colore = blu)

P(Taxi = blu | Colore = blu) = P(Colore = blu | Taxi = blu)P(Taxi = blu) / P(Colore = blu) = 

0.8*0.9 / 0.74 = 0.97

Testimonianza molto affidabile in questo caso!
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Lo strumento principe per lo screaning per il tumore al seno è la radiografia 

(mammografia). 

Definiamo X la situazione della donna: X={sana, malata}

Definiamo Y l’esito della mammografia: Y={positiva, negativa}

La percentuale di donne malate sulla popolazione è dell’1%. 

P(X) = 0.01 – probabilità a-priori.

La sensitività della mammografia è intorno al 90%:

sensitività =                          => P(Y=positive | X=ill (positive))

La specificità della mammografia è anch’essa intorno al 90%:

specificità =                          => P(Y=negative | X=healthy (negative))

ill

positive

N

n

healthy

negative

N

n

Esempio B - I
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Esempio B – II – Probabilità marginali

Negative

Screening

Healthy Ill

0.1 0.9 0.9 0.1

Positive Negative Positive

0.01
0.99

X = {Healthy, Ill}

Y = {Positive, Negative}

P(Y=Positive | X=Ill)*P(X=Ill) = 0.9 * 0.01 = 0.009

P(Y=Positive | X=Healthy)*P(X=Healthy) = 0.1*0.99 = 0.099

P(Y=Positive) = P(Y=Positive | X=Ill)*P(X=Ill) + P(Y=Positive | X=Healthy)*P(X=Healthy) = 

0.009 + 0.099 = 0.108 (probabilità marginale di Y=Positive)

10.8% di probabilità di avere un esame positivo a fronte di uno 0.01% di donne malate! 

Solo lo 0,9% proviene da donne effettivamente malate, le altre sono false positive!
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Esempio B – III – Donne malate

P(X=Ill | Y=Positive) = P(Y=Positive | X=Ill)P(X=Ill) / P(Y=Positive) =

0.09 / 0.108 = 0.083 (8.3%)

Solo 8.3% delle donne con mammografia positiva sono effettivamente ammalate.

Analizzando la formula del teorema di Bayes, dove ha senso investire per ottenere un 

rendimento delle screening maggiore?

10.8% di probabilità di avere un esame positivo a fronte di uno 0.01% di donne malate! 

Solo lo 0,9% circa proviene da donne effettivamente malate, le altre sono false positive!

Qual’è la probabilità che una donna sia veramente malata se il test risulta positivo?

Applichiamo Bayes P(X=Ill | Y=Positive) - PPV (Positive Predictive Value) 

35

36



19

37/56 http:\\borghese.di.unimi.it\A.A. 2025-2026

Esempio B – IV – Screening negativo

Negative

Screening

Healthy Ill

0.1 0.9 0.9 0.1

Positive Negative Positive

0.01
0.99

X = {Healthy, Ill}

Y = {Positive, Negative}

P(Y=Negative | X=Ill)*P(X=Ill) = 0.1 * 0.01 = 0.001

P(Y=Negative | X=Healthy)*P(X=Healthy) = 0.9*0.99 = 0.891

P(Y=Negative) = P(Y=Negative | X=Ill)*P(X=Ill) + P(Y=Negative | X=Healthy)*P(X=Healthy) = 

0.001 + 0.0891 = 0.902 (probabilità marginale di Y=Negative) – più di 90% esami negativi

Di questi 90% di esami negativi, il 10% circa sono relative a donne in realtà malate.
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Esempio B - V

P(X=Ill | Y=Negative) = P(Y=Negative | X=Ill)P(X=Ill) / P(Y = Negative) =

0.1* 0.01 / 0.891 = 0.00112 (0,11%)

Lo 0,11% delle donne malate ricevono una mammografia negativa.

Analizzando la formula del teorema di Bayes, dove ha senso investire per ottenere un 

rendimento delle screening maggiore?

P(Y=Positive) = P(Y=Positive | X=Ill)*P(X=Ill) + P(Y=Positive | X=Healthy)*P(X=Healthy) = 

0.001 + 0.0891 = 0.902 (probabilità marginale di Y=Negative) – più di 90% esami negativi

Qual’è la probabilità che una donna sia in realtà malata se il test risulta negativo?

Applichiamo Bayes P(X=Ill | Y=Negative) 
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Valutazione delle prestazioni dei test 
binari

Sensitività:

Specificità:

𝑉𝑒𝑟𝑖+

𝑁𝑝𝑜𝑠

=
𝑉𝑒𝑟𝑖+

(𝑉𝑒𝑟𝑖+) +(𝐹𝑎𝑙𝑠𝑖−)
=

𝑉𝑒𝑟𝑖+

𝑁𝑢𝑚 𝑚𝑎𝑙𝑎𝑡𝑖

Malati Sani

(positivi) (negativi)

Classifico Positivi Veri + Falsi +

Classifico Negativi Falsi - Veri -

𝑉𝑒𝑟𝑖−

𝑁𝑛𝑒𝑔

=
𝑉𝑒𝑟𝑖−

(𝑉𝑒𝑟𝑖−) +(𝐹𝑎𝑙𝑠𝑖+)
=

𝑉𝑒𝑟𝑖−

𝑁𝑢𝑚 𝑠𝑎𝑛𝑖

Positive predictive value:

Negative predictive value:

Dove conviene investire?

Negative
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Investiamo sulla specificità del test

Screening

Healthy Ill

0.01 0.99 0.9 0.1

Positive Negative Positive Negative

0.01
0.99

X = {Healthy, Ill}

Y = {Positive, Negative}

P(Y=Negative | X=Healthy) = 0.99

P(X=Ill | Y=Positive) = P(Y=Positive | X=Ill)P(X=Ill) / P(Y=Positive) =

0.009 / 0.0189 = 0.476 = 47,6% >> 8.3%

P(Y=Positive | X=Ill) = 0.9 * 0.01 = 0.009

P(Y=Positive) = P(Y=Positive | X=Ill) + P(Y=Positive | X=Healthy) = 

0.009 + 0.99*0.01 = 0.0189 
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Investiamo sulla Sensitività del test

Screening

Healthy Ill

0.010.990.90.1

Positive Negative Positive Negative

0.01
0.99

X = {Healthy, Ill}

Y = {Positive, Negative}

P(X=Ill | Y=Positive) = P(Y=Positive | X=Ill)P(X=Ill) / P(Y=Positive) =

= 0.0099 / 0.1098 = 0.09 = 9% > 8.3%.

P(Y=Positive | X=Ill) = 0.99 * 0.01 = 0.0099

P(Y=Positive) = P(Y=Positive | X=Ill) + P(Y=Positive | X=Healthy) = 

0.0099 + 0.99*0.1 = 0. 1098

P(Y=Positive | X= Ill) = 0.99
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Esempio B - VI  

Screening

Healthy Ill

0.90.1

Positive Negative Positive Negative

0.01
0.99

X = {Healthy, Ill}

Y = {Positive, Negative}

P(X=Ill | Y=Negative) = P(Y=Negative | X=Ill)P(X=Ill) / P(Y=Negative) = 0.001 / 0.891 = 0.11%

Una donna ogni mille non viene diagnosticata!

P(Y=Negative | X=Ill) = 0.1 * 0.01 = 0.001

P(Y=Negative) = P(Y=Negative | X=Ill) + P(Y=Positive | X=Healthy) = 

0.001 + 0.99*0.9 = 0.891

Falsi negativi?

P(X = Ill | Y = Negative)?
0.9 0.1
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Esempio C - I

Myself

Red Box Blue Box

2/8 6/8 5/8 3/8

apple appleorange orange

4/10 6/10

1) Supponiamo di conoscere P(X), probabilità di scelta del box, 

- P(blu) = 0.6

- P(rosso) = 0.4

e la P(Y|X), probabilità di avere una mela (arancia) se scegliamo un certo box, 

possiamo determinare la probabilità assoluta (semplice) di scegliere un certo frutto, P(Y)?

2) Supponiamo di non conoscere P(X), probabilità di scelta del box, conosciamo la probabilità 

P(Y|X) e P(Y). 

Possiamo determinare P(X)?
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1) Determino P(Y = Apple)

P(Y=apple | X = blue) = 5/8 - nota

P(Y=apple | X = red) = 2/8 - nota

P(Y=apple) ≠ (2+5) / 8 = 7/8

P(Y=apple | X = blue) + P(Y=orange | X = blue) = 1

P(Y=apple | X = red) + P(Y=orange | X = red) = 1

Myself

Red Box Blue Box

2/8 6/8 5/8 3/8

apple appleorange orange

4/10 6/10

P(Y=apple) =  P(Y=apple | X = blue) P(X=blue) + 

P(Y=apple | X = red) P(X=red) = 5/8*6/10 + 2/8*4/10 = 38/80 ≠ 7/8

8 24 30 18
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1) Determino P(Y = orange)

P(Y=apple | X = blue) = 5/8 - nota

P(Y=orange | X = blue) = 3/8 - nota

P(Y=apple | X = red) = 2/8 - nota

P(Y=orange | X = red) = 6/8 – nota

P(Y=apple) ≠ (2+5) / 8 = 7/8

P(Y=orange) ≠ (6+3)/8 = 9/8 

Myself

Red Box Blue Box

2/8 6/8 5/8 3/8

apple appleorange orange

4/10 6/10

P(Y=orange) =  P(Y=orange | X = blue) P(X=blue) + 

P(Y=orange | X = red) P(X=red) = 3/8*6/10 + 6/8*4/10 = 42/80 ≠ 9/8

P(Y=apple) =  38/80

P(Y=apple) + P(Y=orange) = 1

8 24 30 18
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Determino P(X=red | Y)

Myself

Red Box Blue Box

2/8 6/8 5/8 3/8

apple appleorange orange

4/10 6/10

P(X=red | Y=orange) =  P(Y=orange|X=red) P(X=red)/P(Y=orange) =

(6/8*4/10) / (21/40) = 24/42 > 4/10

P(X=red | Y=apple) =  P(Y=apple | X=red) P(X=red) / P(Y=apple) =

(2/8*4/10) / (19/40) = 8/38 << 4/10

P (X|Y) 
)(

)()|(

YP

XPXYP
=

8 24 30 18
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Determino P(X | Y)

Myself

Red Box Blue Box

2/8 6/8 5/8 3/8

apple appleorange orange

4/10 6/10

P(X=red | Y=orange) = 24/42 > 4/10

P(X=blue | Y=orange) =  P(Y=orange|X=blue) P(X=blue)/P(Y=orange) =

(3/8*6/10) / (21/40) = 18/42 < 6/10

P(X=red | Y=apple) =  8/38 << 4/10

P(X=blue | Y=apple) =  P(Y=apple | X=blue) P(X=blue) / P(Y=apple) =

(5/8*6/10) / (19/40) = 30/38 >> 6/10

P (X|Y) 
)(

)()|(

YP

XPXYP
=

8 24 30 18
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Interpretazione

P (X|Y) 
)(

)()|(

YP

XPXYP
=

P(X=red | Y=apple) = 8/38 << 4/10

P(X=blue | Y=apple) = 30/38 >> 6/10

Myself

Red Box Blue Box

2/8 6/8 5/8 3/8

apple appleorange orange

4/10 6/10

yj

Red Blue

xi

Correggo la probabilità a-priori, P(X) con le informazioni raccolte, 

P(Y), e ottengo una nuova valutazione della probabilità di X (che 

dipende da Y), P(X | Y) detta probabilità a-posteriori.

8 24 30 18

4/10*2/8=8/80 – 8 6/10*5/8=30/80 – 30

4/10*6/8=24/80 - 24 6/10*3/8=18/80 - 18

Apple

Orange

xi
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Importanza
P (X|Y) 

)(

)()|(

YP

XPXYP
=

Questo è un tipico esempio di problema inverso.

Raccogliamo delle misure Y e vogliamo determinare da quale sistema (modello 

probabilistico) possono essere state generate.

Possiamo inserire delle informazioni statistiche (a-priori) su X, cioè sulla forma del 

modello (e.g. smoothness)

Myself

Red Box Blue Box

2/8 6/8 5/8 3/8

apple appleorange orange

4/10 6/10

8 24 30 18
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Graphical models

A graphical model o modello probabilistico su grafo (PGM) è un modello 

probabilistico che evidenzia le dipendenze tra le variabili randomiche (può 

evolvere eventualmente in un albero). Viene utilizzato nell’inferenza statistica. 
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Estensione a più variabili
Sostituisco un’espressione logica a una variabile:

P(X| Y1;Y2)  if ( P(Y1) = y1 and P(Y2) = y2 ) then  P(X) = X

Z = Y1 and Y2
mal di denti !mal di denti

cavità !cavità cavità !cavità

carie 0,108 0,012 0,072 0,008

!carie 0,016 0,064 0,144 0,576

Dalla tabella delle probabilità congiunte ricaviamo (Z = mal di denti AND cavità):

P(carie; Z) = P(carie AND (mal di denti AND cavità)) = 0,108

P(carie | Z) = P(carie | (mal di denti AND cavità)) = 

P(carie AND (mal di denti AND cavità)) / P(mal di denti AND cavità) = 

0,108 / (0,016 + 0,108) = 0,108 / 0,124 = 0,871 – complessa

Carie, mal di denti e cavità non sono indipendenti, come trattiamo l’AND?
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Estensione a più variabili
P(X| Y1;Y2)  if ( P(Y1) = y1 and P(Y2) = y2 ) then  P(X) = x

Z = Y1 and Y2

mal di denti !mal di denti

cavità !cavità cavità !cavità

carie 0,108 0,012 0,072 0,008

!carie 0,016 0,064 0,144 0,576

P(carie | Z) = P(carie | (mal di denti AND cavità)) = 

P(carie AND (mal di denti AND cavità)) / P(mal di denti AND cavità) = 

0,108 / (0,016 + 0,108) = 0,108 / 0,124 = 0,871 

P(mal di denti AND cavità | carie) = P((mal di denti AND cavità AND carie) / P(carie)  =  

0,108 / 0,2 = 0,54
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Estensione a più variabili
P(X| Y1;Y2)  if ( P(Y1) = y1 and P(Y2) = y2 ) then  P(X) = x

Z = Y1 and Y2

mal di denti !mal di denti

cavità !cavità cavità !cavità

carie 0,108 0,012 0,072 0,008

!carie 0,016 0,064 0,144 0,576

Carie, mal di denti e cavità non sono indipendenti, come trattiamo l’AND?

P(carie AND mal di denti) = P(carie) + P(mal di denti) – P(carie OR mal di denti) = 0,108 

+ 0,012 + 0,072 + 0,008 + 0,108 + 0,012 + 0,016 + 0,064 – (0.28) = 0.2 + 0.2 – 0.28 = 0.12

Come lo possiamo trattare invece se sono indipendenti?

P(X AND Y) = P(X)P(Y)
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Naïve Bayes

Sostituiamo un’espressione a una variabile logica:

P(X | (Y1 AND Y2))*P(Y1 AND Y2) =  P(Y1 AND Y2 | X) * P (X)         Bayes

Introduciamo un’altra ipotesi. Cosa succede se Y1 e Y2 sono indipendenti? Dipendono 

entrambe da X ma non dipendono tra di loro.

Sono cioè condizionatamente indipendenti, cioè porta a:

P((Y1 AND Y2) | X) * P (X) = (P(Y1 | X) * P(Y2 | X)) * P(X)

In questo caso viene semplificato il calcolo dell’AND, che viene calcolato come prodotto delle 

probabilità.

Modello Naive Bayes   Gli effetti sono supposti indipendenti tra loro e dipendono da una 

stessa causa

In generale: P(Causa | Effetto1 and Effetto2 and ... EffettoN) = 
=

N

i

i CausaEffettoP
1

)|(
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Riepilogo

P (X|Y) 
)(

),(

)(

)()|(

YP

YXP

YP

XPXYP
== Teorema di Bayes

Lega probabilità condizionate, congiunte, semplici (marginali)

Consente di inferire la probabilità di un evento causa, X, a partire dalla 

probabilità associata alla frequenza di una certa misura, effetto, P(Y), 

dalla frequenza relativa dell’evento associato alla misura, P(Y), e dalla 

probabilità nota a-priori, P(X), della causa.

La probabilità P(X|Y) viene per questo detta probabilità a-posteriori ed è 

una probabilità condizionata.

Viene utilizzata nei problemi inversi.
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Overview

Probabilità semplice e condizionata

Teorema di Bayes
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